Boosting structured additive quantile regression for longitudinal childhood obesity data.
نویسندگان
چکیده
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.
منابع مشابه
Detection of risk factors for obesity in early childhood with quantile regression methods for longitudinal data
This article compares and discusses three different statistical methods for investigating risk factors for overweight and obesity in early childhood by means of the LISA study, a recent German birth cohort study with 3097 children. Since the definition of overweight and obesity is typically based on upper quantiles (90% and 97%) of the age specific body mass index (BMI) distribution, our aim wa...
متن کاملIdentifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
Ordinary linear and generalized linear regression models relate the mean of a response variable to a linear combination of covariate effects and, as a consequence, focus on average properties of the response. Analyzing childhood malnutrition in developing or transition countries based on such a regression model implies that the estimated effects describe the average nutritional status. However,...
متن کاملAnalysis of Childhood Stunting in Malawi Using Bayesian Structured Additive Quantile Regression Model
Analyses of childhood stunting have mainly used mean regression yet modeling using quantile regression is more appropriate than using mean regression in that the former provides flexibility to analyze the determinants of stunting corresponding to quantiles of interest whereas the latter allows only analyzing the determinants of mean stunting. Bayesian structured additive quantile regression mod...
متن کاملPrediction intervals for future BMI values of individual children - a non-parametric approach by quantile boosting
BACKGROUND The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. METHODS We avoid distributional assumptions by directly modelling the borders of ...
متن کاملBayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data
Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The international journal of biostatistics
دوره 9 1 شماره
صفحات -
تاریخ انتشار 2013